

I can notice when calculations are repeated.

I see number patterns!

I can notice when calculations are repeated.

 $5 \times 2 = 10$

2 + 2 + 2 + 2 + 2 = 10

I am adding 2 five times.

I am counting rows with 2 in each row five times.

I am making 5 hops of 2 on the number line.

Clip art licensed from the Clip Art Gallery on DiscoverySchool.com

Jordan School District 2012, Grades 2-3

I can notice when calculations are repeated. Then, I can find more general methods and short cuts.

As I work	There are many ways to de	compose 3 because it is c I CAN	omposed of repeated $\frac{1}{8}$ s.
I think about what I'm trying to figure out while I pay attention to the details	draw a whole and shade in three $\frac{1}{8}$ s parts.	add eighths. $\frac{3}{8} = \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$	count by eighths. (one-eighth, two eighths, three eighths) $\frac{3}{8} = \frac{1}{8}, \frac{1}{8}, \frac{1}{8}$
I evaluate if my results are reasonable.	jump three $\frac{1}{8}$ size ju on a number		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Clip art licensed from the Clip Art Gallery on DiscoverySchool.com

Jordan School District 2012, Grades 4-5

I can notice when calculations are repeated. Then, I can find more general methods and short cuts.

As I work	EXAMPLE: I have a container of yogurt that is 3⁄4 full. One serving of yogurt is 1⁄4 of the container. How many servings are left in the container? (THINK: How many 1⁄4's are in 3⁄4's?)			
I think about what I'm trying to figure out while I pay attention to the details.	I can notice that ¹ / ₄ is repeated and draw a model to figure out the number of servings left in the container.			
I evaluate if my results are reasonable.	Once I understand division of fractions, I can use a short cut to solve it like this. $\frac{3}{4} \div \frac{1}{4} = \frac{3}{4} \times \frac{4}{1} \rightarrow \frac{3}{4} \times \frac{4}{1} = \frac{12}{4} \rightarrow \frac{12}{4} = \frac{3}{1} \rightarrow \frac{3}{1} = 3$			

Clip art licensed from the Clip Art Gallery on DiscoverySchool.com

Jordan School District 2012, Grade 6